https://sajhealthsci.com





South Asian Journal of Health Sciences



# *Letter to Editor* **Unveiling MIF: The hidden hero in cancer therapy's evolution**

#### Prithiviraj Nagarajan<sup>1</sup>

<sup>1</sup>Assistant Professor, Department of Medical Biotechnology, Aarupadai Veedu Medical College & Hospital, Vinayaka Mission's Research Foundation (Deemed to be a University), Kirumampakkam, Puducherry, India.

# \*Corresponding author:

Dr. Prithiviraj Nagarajan, Assistant Professor, Department of Medical Biotechnology, Aarupadai Veedu Medical College & Hospital, Vinayaka Mission's Research Foundation (Deemed to be a University), Kirumampakkam, Puducherry, India.

prithivinaga@gmail.com

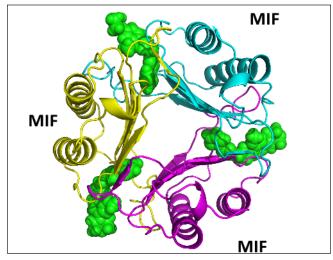
Received: 08 September 2023 Accepted: 17 October 2023 Published: 28 December 2023

**DOI** 10.25259/SAJHS\_5\_2023

Quick Response Code:



#### Dear Editor,


The prospective therapeutic approach of targeting Macrophage Migration Inhibitory Factor (MIF) offers promise in inflammatory illnesses and cancer; Bloom, and David 1966, identified MIF as an inflammatory cytokine produced by T-cells.<sup>[1]</sup> This breakthrough marked a significant advancement in medical research, revealing MIF's pivotal role in immunological responses, inflammatory processes, and disease progression.<sup>[2]</sup> This comprehensive study delves into the complex realm of MIF, shedding light on its significance in cancer pathophysiology, innate and acquired immunity, inflammatory diseases, and related areas<sup>[3]</sup> This article scrutinizes recent strides in understanding MIF's structural properties, enzymatic functions, and potential as a therapeutic target, mainly focusing on its prospects for therapeutic interventions.<sup>[4]</sup> Exploring personalised treatments aimed at regulating MIF, be it through small-molecule inhibitors or gene therapy, harbors the potential to revolutionise therapeutic approaches for a broad spectrum of MIF-associated disorders.<sup>[5]</sup> This narrative aims to elucidate the evolving landscape of MIF research, offering crucial insights into its therapeutic capabilities and its promising role in the future of precision medicine.<sup>[6]</sup>

MIF's significance transcends its biological functions; X-ray crystallography and Nuclear Magnetic Resonance (NMR) methods have revealed its homo-trimeric composition [Figure 1],<sup>[6]</sup> with recent research highlighting the critical role of the carboxy-terminal region in maintaining both its structural integrity and enzymatic activity.<sup>[7]</sup>

MIF's regulatory activities are essential in maintaining concentrations between 2 ng/ml and 6 ng/ml, displaying diurnal patterns possibly linked to plasma cortisol levels<sup>[8]</sup> However, in cases of reduced glucocorticoids, released MIF counteracts their suppressive effect on cytokine production, undermining glucocorticoids' anti-inflammatory benefits<sup>[9]</sup> Dysregulated MIF activity can profoundly impact clinical conditions like glomerulonephritis, acute lung injury, sepsis, and acute pancreatitis.<sup>[7]</sup>

MIF is a versatile molecule with tautomerase activity akin to certain bacterial enzymes. This enzymatic function, along with its ability to suppress cytokines, has led to the development of small-molecule inhibitors like ISO-1 and 4-ipp, which hold promise in sepsis research;<sup>[5]</sup> MIF's influence extends to cancer, with elevated expression seen in various malignancies. It plays a role in tumour progression, angiogenesis, immune evasion, and regulation of tumour suppressor genes like p53, highlighting the link between inflammation and cancer.<sup>[10]</sup> In conclusion, MIF's multifaceted role in inflammatory diseases and cancer points towards the frontiers of precision medicine. This comprehensive guide spotlights MIF's structure, functions, and therapeutic

This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-Share Alike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms. ©2023 Published by Scientific Scholar on behalf of South Asian Journal of Health Sciences



**Figure 1**: Illustrates the trimeric structure of the MIF protein, where blue, pink, and yellow colors represent the individual components. For a color illustration, please refer to the online version at www. interscience.wiley.com

potential, offering a range of options from small-molecule inhibitors to gene therapy. Targeted interventions may reshape outcomes for MIF-associated disorders, propelling us toward a future illuminated by the principles of precision medicine.

#### Author contributions

Prithiviraj played a crucial role in conceptualising the information and actively participated in writing and editing the manuscript.

# **Ethical approval**

The Institutional Review Board approval is not required.

# Declaration of patient consent

Patient consent is not required as there are no patients in this study.

#### Financial support and sponsorship

Nil.

#### **Conflicts of interest**

There are no conflicts of interest.

# Use of artificial intelligence (AI)-assisted technology for manuscript preparation

The authors confirm that there was no use of artificial intelligence (AI)-assisted technology for assisting in the writing or editing of the manuscript and no images were manipulated using AI.

# REFERENCES

- Bloom BR, Bennett B. Mechanism of a reaction in vitro associated with delayed-type hypersensitivity. Science 1966;153:80-2.
- 2. David JR. Delayed hypersensitivity in vitro: Its mediation by cell-free substances formed by lymphoid cell-antigen interaction. Proc Natl Acad Sci USA 1966;56:72–7.
- 3. Nishihira J, Koyama Y, Mizue Y. Identification of macrophage migration inhibitory factor (MIF) in human vascular endothelial cells and its induction by lipopolysaccharide. Cytokine 1998;10:199–205.
- Rossi AG, Haslett C, Hirani N, Greening AP, Rahman I, Metz CN, *et al.* Human circulating eosinophils secrete macrophage migration inhibitory factor (MIF). Potential role in asthma. J Clin Invest 1998;101:2869–74.
- Imamura K, Nishihira J, Suzuki M, Yasuda K, Sasaki S, Kusunoki Y, *et al.* Identification and immunohistochemical localization of macrophage migration inhibitory factor in human kidney. IUBMB Life 1996;40:1233–42.
- 6. Shimizu T. The role of macrophage migration inhibitory factor (MIF) in ultraviolet radiation-induced carcinogenesis. Cancers (Basel) 2010;2:1555–64.
- Bacher M, Metz CN, Calandra T, Mayer K, Chesney J, Lohoff M, *et al.* An essential regulatory role for macrophage migration inhibitory factor in T-cell activation. Proc Natl Acad Sci USA 1996;93:7849–54.
- Calandra T, Bernhagen J, Mitchell RA, Bucala R. The macrophage is an important and previously unrecognized source of macrophage migration inhibitory factor. J Exp Med 1994;179:1895–902.
- Daryadel A, Grifone RF, Simon H-U, Yousefi S. Apoptotic neutrophils release macrophage migration inhibitory factor upon stimulation with tumor necrosis factor-α. J Biol Chem 2006;281:27653–61.
- Pan J-H, Sukhova GK, Yang J-T, Wang B, Xie T, Fu H, *et al.* Macrophage migration inhibitory factor deficiency impairs atherosclerosis in low-density lipoprotein receptor-deficient mice. Circulation 2004;109:3149–53.

**How to cite this article:** Nagarajan P. Unveiling MIF: The hidden hero in cancer therapy's evolution. South Asian J Health Sci. 2024;1:53–4. doi: 10.25259/SAJHS\_5\_2023